John Prosock Machine, Inc.

Home | Materials | Careers | Site Map | Blog

John Prosock Machine, Inc. Custom CNC Machining

CORPORATE OVERVIEW

EQUIPMENT LIST

MEET OUR STAFF

Request for
Quotation

Brochure
Download

Contact Us  

CNC
MACHINING

CNC Milling

CNC Turning

CAPABILITIES

Prototyping

Precision Machining

Assembly

 
" I think of John Prosock as a value added partner and I would recommend JPM to everyone except my competition." Kody, SKF

MORE Customer Testimonials »

Prosock Machine Shop Talk

April 2, 2009

An Innovative Prototype

There’s a great publication called “Cutting Tool Engineering” magazine that has been supporting the manufacturing and CNC machining world for years. Bill Kennedy is a contributing editor of the magazine. He has selected John Prosock Machine as a subject for his text article in his “Part Time” column. He will be doing an interview with our shop manager about a machined part that we have recently made for a customer. We will post the article when its finished. In the mean time here’s one of Bill’s recent articles.

BY BILL KENNEDY,

CONTRIBUTING EDITOR

A manufacturer developing a small electric motor with a cast aluminum housing wanted to work with a prototype before investing in tooling for producing the castings. Innovative Machining Inc., a job shop that handles engineering design and both production and prototype manufacturing, engineered a way to efficiently machine the

prototype from aluminum bar stock. Measuring 6″ in diameter x 3″ long, the complicated front half of the housing had a 1.85″-deep cavity on one end, a variety of holes and a contoured channel on the other, and an array of cooling fins around the OD. Using an IGES CAD file supplied by the manufacturer, Innovative created turning and milling toolpaths with Mastercam CAM software to machine the housing from a 6″-dia., 31⁄4″-

long bar of 6061-T651 aluminum. Initial roughing took place on a Mazak Quick Turn 20N CNC lathe. A 0.850″-dia. hole was drilled through the center of the part’s axis, and the hole was counterbored at a diameter of 1.378″ to a depth of 1.0″. A grooving tool held in a boring bar cut a 0.056″-wide, 1.464″-dia. keyway 0.30″ deep in the counterbore. Then the part was turned end-toend in the lathe chuck and rough-bored to within 0.100″ of final dimensions.

The rest of the process required three setups on a Haas VF-3 vertical machining center. Programmer Seth Cross said one of the main challenges in making the part was “timing,” or aligning, the part in the three fixturings to ensure correct relationship among the housing’s complex features. For the first setup, the part was clamped on the VMC’s table with custom-made aluminum soft jaws, and located using the center bore made previously on the lathe. First, a 1⁄2″-dia. SGS Ski-Carb endmill, run at a 7,500-rpm spindle speed and 50-ipm feed rate, roughed the inside of the part. One pass left 0.010″ of excess stock in the cavity, and a second pass finished the casting bottom. Cross said maintaining the required 32 Ra surface finish was difficult, because the cavity’s depth made it a long reach for the cutter. The solution was to “slow everything down.” Next, 18 flats, each 0.700″ wide, were milled around the cavity wall with a 5⁄16″-dia., 2-flute Garr endmill run at 2,400 rpm and 10 ipm. A 45º chamfer mill, ground for use as a spotting tool, marked locations for two holes in the bottom of the cavity and for 14 other holes along its rim. Then a 3⁄4″ drill made two through-holes in the cavity bottom at 1,146 rpm and 4.58 ipm. In a cutout area in the cavity bottom, a 1⁄4″ drill run at 4,584 rpm and 22.92 ipm started a hole that was finished to a 0.150″ depth with a 1⁄4″ flat-bottom drill applied at the same parameters.

In the locations spotted earlier on the housing rim, a 3⁄16″ stub drill made six 0.750″-deep holes at 4,584 rpm and 16 ipm. Then, after a No. 31 (0.1200″-dia.) stub drill made two 0.05″-deep holes in the rim at 7,162 rpm and 13.5 ipm, a No. 30 (0.1285″) reamer run at 3,357 rpm and 30 ipm brought them to final dimensions. Next, a long spotting drill, run at

2,292 rpm and 10 ipm, located three places where a No. 43 (0.89″) drill run at 9,048 rpm and 12.6 ipm made three 0.270″-deep holes. Those three holes were threaded to a depth of 0.220″ with a 4-40 tap at 800 rpm and 20 ipm. Cross said one of the major challenges

of this first setup was tapping these holes. They were so close to the cavity walls that there was insufficient clearance for tool extensions, so he was forced to apply an extended tap at reduced cutting parameters. To complete this setup’s operations, which took about half an hour, a chamfer mill cleaned up the bottom of the cavity at 1,500 rpm and 45 ipm. For the next setup, the housing was flipped 180º. Cross made a fixture plate

with pins to fit the 3⁄4″ holes drilled earlier. “We slipped the part down on the pins and bolted it through the counterbore in the center,” he said. The 1⁄2″ Ski-Carb endmill was applied first, at 9,168 rpm and 73 ipm, to facemill the end of the part, leaving 0.070″-wide x 0.093″-high rings of material around each of the three large through-holes. Then a 3⁄16″, 2-flute endmill machined a twisting, 0.5″-wide x 0.75″-deep channel around the top of the part at 9,000 rpm and 30 ipm. Cross said, “It took a while to machine the channel. I had to step down in light steps—0.100″ or 0.125″—so I didn’t break my tooling.”

Next, a 1⁄2″ chamfer mill, ground as a spotter and run at 6,000 rpm and 12 ipm, located six points on the rim where a 3⁄32″ drill then made 1.5″-deep holes at 5,496 rpm and 13.8 ipm. Next to each of those holes, a No. 2 (0.221″), applied at 3,885 rpm and 15.6 ipm,

drilled through the part. A 3⁄8″ Ski-Carb endmill counterbored those six holes to a depth of 0.885″. This set of operations took about 1 hour. The third milling setup was on a vertical rotary table, which served as the Haas machine’s 4th axis. The housing was clamped onto the table in a 3-jaw chuck. The fixture, featuring locating pins, was designed to hold the part about 4″ away from the chuck to provide tool clearance. The housing OD has seven flats along its axis.

Six are 0.560″ wide and one is 1.7″ wide, and they were milled with a 1⁄2″ Ski-Carb endmill at 9,000 rpm and 76 ipm. Then a chamfer mill spotting tool, run at 6,000 rpm and 10 ipm, marked one hole location in each narrow

flat and nine locations in the wide flat. A 0.261″ G-drill run at 3,291 rpm and 15.6 ipm then drilled two holes in the wide flat, located 0.400″ from the front of the part. A 1⁄4-28 STI tap threaded those holes at 800 rpm and 28.57 ipm to prepare for later insertion of helicoils. Then, between the 0.261″ holes and the front of the part, a 1⁄4″ Ski-Carb endmill made two 0.600″- dia., 0.375″-deep holes at 5,612 rpm and 42 ipm. The same endmill, run at 6,112 rpm and 42 ipm, also made a 3⁄4″- dia. through-hole centered 0.700″ from the housing’s back edge.

Around the 0.600″-dia. hole, a No. 43 (0.089″) drill run at 9,648 rpm and 12.6 ipm made four holes 0.375″ deep, which were then threaded to a depth of 0.250″ with a 4-40 tap at 800 rpm and 20 ipm. Holemaking concluded after a No. 17 (0.173″) drill run at 4,965 rpm and 15.3 ipm made a 0.370″-deep hole in each of the 0.560″ flats, 1.050″ from the back edge of the housing. The holes were threaded with an 8-32 tap at 800 rpm and 25 ipm. A final machining challenge—80 cooling fins, each 0.34″ deep, arrayed axially around the housing—was overcome with two cutters designed by Shawn Gibbs, Innovative’s general manager, and Dean Kerbs, shop floor manager. Each cutter was tooled with three carbide inserts. One cutter machined a 0.026″ radius at the fin base and a 0.027″ radius at the top, and the other, engineered to make the fins positioned next to the axial flats, produced only the base radius. The cutters ran at 1,900 rpm and 19 ipm. Run time for the operations in the third setup was 45 minutes. Postmachining operations included selective anodizing of parts of the housing service, and installation of helicoils. Three prototypes were produced. Gibbs noted that the housing “had a lot of difficult challenges,” but it’s typical of Innovative’s work. In many cases, he said, solving customer problems on specialized prototype parts leads to production-level contracts on other jobs.

For more information about Innovative

Machining Inc., Wheat Ridge, Colo.,

visit www.innovativemachininginc.com

or call (303) 421-1006.

March 4, 2009

Open house for Machine Shop owners

For Machine Shops that are looking for answers, check this out.

Open House March 18th 9am to 4pmBottom Header or register by calling (866) 277-8778 ext. 219 or email events@cimquest-inc.com

Please join us for an Open House featuring CAD/CAM and Prototyping Solutions. You can come and stay as long as you like. There will be Technical Professionals available all day long for product demonstrations. Appointments are not necessary for this event, however registration is required.

• High-end Rapid Prototyping Technology for under 15K
• Network with other industry professionals
• Stump the Applications Engineer – Demonstrations and Q&A’s
See first-hand new products
? uPrint 3D Printer by Dimension
? Robotmaster for robot programming
? Fortus Direct Digital Mfg. machine for your prototyping needs
? Simulation, Technical Publications and Data Management Solutions
? Mastercam running INSIDE SolidWorks

View the Specifications

See the Applications

uPrint

Click Here To Register Today
or call (866) 277-8778 ext. 219

Only $14,900 USD

Benefits

  • Affordable 3D printing right at your desk.
  • Durable, detailed ABS models ready for discussion and
    testing.
  • Accelerate Designs from CAD to model.

Click here to request a sample part

Open House 9am to 4pm Registration Required
Logos
Dimensions

Click Here To Register Today
or call (866) 277-8778 ext. 219

Dimension Printers

Leading Technology and proven performance starting at $18,900 USD

Click below for more information.

Fortus Product Lines

Click Here To Register Today
or call (866) 277-8778 ext. 219

Fortus Products

Fortus 360mc – The Fit, Form and Function System
Fortus 400mc – The Flexible System
Fortus 900mc – The Production System
Demonstrations are also available for:
SolidWorks RobotMasters MasterCam
Cimquest Inc.
1545 Route 206 South – 2nd Floor
Bedminster, NJ 07921
(866) 277-8778 ext. 219
events@cimquest-inc.com
http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393633&736272=31281&747970=6874&66=30 uPrint http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393634&736272=31281&747970=6874&66=30 Stratasys http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393630&736272=31281&747970=6874&66=30 SolidWorks http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393632&736272=31281&747970=6874&66=30 Mastercam http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393631&736272=31281&747970=6874&66=30 RobotMaster http://tk1.publicaster.com/DC/ctr.aspx?6C6164=35373238393638&736272=31281&747970=6874&66=30 Dimension

This email was sent to jpm@jprosock.com.
To view this email in a browser, click here
To forward this message to a friend, click here
To stop receiving emails in future, click here

October 27, 2008

Happy Monday. An Oxymoron?

Filed under: Uncategorized — Tags: , , , , — admin @ 1:51 pm

Happy Monday! Maybe that’s an oxymoron? But, despite what you hear in the news about the economy we here at John Prosock Machine are very blessed, we are busy. 🙂 In fact we have many things to be happy about here at John Prosock Machine. We are a CNC Job shop in Pennsylvania and it is very beautiful now, the leaves are changing. John Prosock Machine has many devoted employees that keep our production flowing. The Phillies are one game away from winning the World Series and people around here are pretty excited! Anyway there are so may things for John Prosock Machine to be happy about. Have a great day!

GO PHILLIES!!

Older Posts »
 

Copyright © 2008 by John Prosock Machine, Inc. All rights reserved Powered by WordPress

 
  ISO 9001:2015 Certified, ANAB Accredited and IAF Accredited
 

Website Design by Dynamic Digital Advertising